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In reference [1] Blair et al. applied a harmonic balance technique coupled with a
continuation algorithm to study the dynamic response to changes in the amplitude
of the applied harmonic force for Duffing’s equation with a negative linear stiffness
written as [2]

ẍ+ gẋ−(x/2)(1− x2)=F sin vt. (1)

The stability of the solutions was investigated by the Floquet theory. The
harmonic balance technique is very efficient and it has the advantage of also
discovering the unstable solutions. Among other interesting results, Blair et al.
found new cascades of period doubling solutions ending in the limit in chaotic
motion. With g=0·168 and v=1 an examination of the change in the Fourier
coefficients of the solutions reveals the occurrence of several period doublings.
Sequences of period doubling orbits represented in the phase plane have been
illustrated in reference [1], e.g., for the cascade near F=0·177 in Figure 4(a),
Figure 4(b) and Figure 4(c) representing 1T, 2T and 4T-solutions, respectively,
and for the reverse cascade near F=0·975 in Figure 4(l), Figure 4(m) and Figure
4(n) illustrating 4T, 2T and 1T-solutions. The cascade near F=0·975 has not been
found previously. In reference [1] it is cited that the solutions with the periods
higher than 4T become computationally difficult to obtain since many Fourier
coefficients have to be retained in the solution.

In this letter the bifurcation diagram is established for the two cascades of
period doubling solutions mentioned above thus confirming the results of reference
[1] related to this matter. In addition, by the use of a continuation technique based
on the shooting method, it is illustrated that the solutions having the higher
periods can also be readily obtained and that the distances between two
consecutive transition values for F in the bifurcation tree satisfy Feigenbaum’s
relation [3] from Universality Theory.

With x1 = x, x2 = ẋ, equation (1) is rewritten as:

ẋ1 = x2, ẋ2 = (x1/2)(1− x2
1 )− gx2 +F sin vt. (2)

This system of differential equations is integrated by the use of the
Runge–Kutta–Hǔta method of order six [4], which is a very accurate scheme. With
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the transient regime omitted, the Poincaré section point for x1 at t=0 is plotted
with sampling period T=2p/v in terms of the parameter F. Figure 1 shows the
bifurcation diagram with the first period doubling from the asymmetric
1T-solution appearing near F=0·177. Four transitions are readily seen in this
figure. In the limit, chaotic behavior is observed in the vicinity of F=0·205. The
reverse cascade near F=0·975 is represented in Figure 2. These bifurcation
diagrams suggest some regularity for the distances between the transition values
for F.

A more precise computation of the transition values is investigated by the use
of the continuation technique based on the shooting method [5–7]. Equation (2)
is written in the form

ẋ=X(x, t), (3)

with x two-dimensional and in which X is periodic with period T=2p/v. One can
look for a P-periodic solution of equation (3). In the period doubling cascade one
alternatively chooses P=1T, P=2T, P=4T, . . . . One takes a starting point x0

corresponding with t=0. In the shooting method the correction vector
Dx0 = xnew − x0, has to satisfy the system of linear equations

[I−A(P)]Dx0 = e0, (4)

where e0 is the error at the end of the numerical integration of equation (3) for
t=P:

e0 = x(P)− x0. (5)

Figure 1. Period doubling bifurcations near F=0·177 with g=0·168 and v=1.
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Figure 2. Period doubling bifurcations near F=0·975 with g=0·168 and v=1.

I is the identity matrix and A(P) is the fundamental matrix of the system of the
first variational equations derived from equation (3) with respect to the reference
solution x(t, x0):

ẏ=Xx [x(t, x0), t]y, (6)

with A(0)= I and where Xx denotes the relevant partial derivative.
Equation (4) is used now in an iterative manner. In each iteration one has to

solve the linear system for the corrections Dx0, thus determining the ameliorated
value xnew . This is continued until numerical convergence of the iterative method
is reached. The suggested technique allows one to compute the stable as well as
the unstable solutions. Stable periodic solutions correspond to eigenvalues of A(P)
which are lying inside the unit circle. At the transition from a stable iT-solution
(i=1, 2, 4, . . . ) to an unstable iT-solution one of the eigenvalues of A(iT) leaves
the unit circle along the real axis at the value −1. The passage through the value
−1 is computed with high accuracy by applying polynomial interpolation and
using a few additional calculations with small changes of F near the transition
value. By repeated use of this procedure each transition in the sequence
1T:2T:4T:8T:16T . . . is computed with high precision.

Table 1 gives the results in the cascade near F=0·177. Listed values are the
transition value for F, one of the Poincaré section points in the phase plane (the
values x1 and x2 at t=0) and the numbers di defined from the transition values
Fi as

di =DFi /DF2i , (7)
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T 1

The transition values Fi , the initial conditions x1, x2 and the numbers di in the cascade
near F=0·177

Transition Fi x1 x2 di

1T:2T 0·177441472 0·608041 −0·341204
2T:4T 0·195484923 0·871826 −0·327403
4T:8T 0·198951258 0·945554 −0·290570 5·2053
8T:16T 0·199691674 0·959765 −0·282158 4·6816

16T:32T 0·199851192 0·962830 −0·279694 4·6416
32T:64T 0·199885412 0·962942 −0·279478 4·6615

with DFi =Fi −F2i and i=1, 2, 4, 8, . . . . From the last column in Table 1 it is
seen that the numbers di numerically tend to Feigenbaum’s number d=4·6692 . . .
from Universality Theory [3]. At the limit of the sequence of the transition values
the bevavior of the system becomes chaotic. Table 2 illustrates that similar results
and conclusions hold for the cascade of period doubling solutions near F=0·975,
thus confirming Feigenbaum’s relation.

The orbits for the period doubling cascade with its characteristics given in Table
1, encircle the point x1 =1, x2 =0 in the phase plane. Note that there exists an
analogous cascade of period doubling solutions for which the orbits encircle the
point x1 =−1, x2 =0. This mirrored cascade is characterized by the same
transition values for F as those given in Table 1. The initial conditions at t=0
for, e.g., the first transition 1T:2T at F=0·177441 are x1 =−1·001778 and
x2 =−0·470825. Similarly, one finds a mirrored bifurcation tree with respect to
the one with its characteristics listed in Table 2. The first transition occurs at
F=0·975036 with x1 =−0·233146 and x2 =−0·769908.

The solutions with the higher periods, which are difficult to find by the harmonic
balance method, are readily obtained by the continuation technique combined
with the shooting method. A typical orbit is illustrated in Figure 3 representing
the 8T-solution at the transition value F=0·199692 in the first cascade. The
relevant 1T, 2T and 4T-solutions in this cascade have been illustrated in Figure
4 in reference [1].

T 2

The transition values Fi , the initial conditions x1, x2 and the numbers di in the cascade
near F=0·975

Transition Fi x1 x2 di

1T:2T 0·975036326 0·0267011 −0·747650
2T:4T 0·969514162 0·0420834 −0·760360
4T:8T 0·968511396 0·0444446 −0·757648 5·5069
8T:16T 0·968299488 0·0449224 −0·756598 4·7321

16T:32T 0·968254025 0·0450303 −0·756378 4·6610
32T:64T 0·968244279 0·0450472 −0·756393 4·6649
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Figure 3. The 8T-orbit in the phase plane at the transition value F=0·199692 with its
characteristics given in Table 1.
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